Python

What is Python?
Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.
Often, programmers fall in love with Python because of the increased productivity it provides. Since there is no compilation step, the edit-test-debug cycle is incredibly fast. Debugging Python programs is easy: a bug or bad input will never cause a segmentation fault. Instead, when the interpreter discovers an error, it raises an exception. When the program doesn't catch the exception, the interpreter prints a stack trace. A source level debugger allows inspection of local and global variables, evaluation of arbitrary expressions, setting breakpoints, stepping through the code a line at a time, and so on. The debugger is written in Python itself, testifying to Python's introspective power. On the other hand, often the quickest way to debug a program is to add a few print statements to the source: the fast edit-test-debug cycle makes this simple approach very effective..


Python is a widely used general-purpose, high-level programming language. Its design philosophy emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be possible in languages such as C++, or Java. The language provides constructs intended to enable clear programs on both a small and large scale.
Python supports multiple programming paradigms, including object-oriented, imperative and functional programming or procedural styles. It features a dynamic type system and automatic memory management and has a large and comprehensive standard library.
Python interpreters are available for installation on many operating systems, allowing Python code execution on a wide variety of systems. Using third-party tools, such as Py2exe or Pyinstaller,Python code can be packaged into stand-alone executable programs for some of the most popular operating systems, allowing for the distribution of Python-based software for use on those environments without requiring the installation of a Python interpreter.
History:
Python was conceived in the late 1980s and its implementation was started in December 1989by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language (itself inspired by SETL) capable of exception handling and interfacing with the Amoeba operating system. Van Rossum is Python's principal author, and his continuing central role in deciding the direction of Python is reflected in the title given to him by the Python community, benevolent dictator for life (BDFL).
About the origin of Python, Van Rossum wrote in 1996:
Over six years ago, in December 1989, I was looking for a "hobby" programming project that would keep me occupied during the week around Christmas. My office ... would be closed, but I had a home computer, and not much else on my hands. I decided to write an interpreter for the new scripting language I had been thinking about lately: a descendant of ABC that would appeal to Unix/C hackers. I chose Python as a working title for the project, being in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus).
Python 2.0 was released on 16 October 2000, and included many major new features including a full garbage collector and support for Unicode. With this release the development process was changed and became more transparent and community-backed.
Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible release, was released on 3 December 2008 after a long period of testing. Many of its major features have been backported to the backwards-compatible Python 2.6 and 2.7
Comparing Python to Other Languages:
Python is often compared to other interpreted languages such as Java, JavaScript, Perl, Tcl, or Smalltalk. Comparisons to C++, Common Lisp and Scheme can also be enlightening. In this section I will briefly compare Python to each of these languages. These comparisons concentrate on language issues only. In practice, the choice of a programming language is often dictated by other real-world constraints such as cost, availability, training, and prior investment, or even emotional attachment. Since these aspects are highly variable, it seems a waste of time to consider them much for this comparison.
Java
Python programs are generally expected to run slower than Java programs, but they also take much less time to develop. Python programs are typically 3-5 times shorter than equivalent Java programs. This difference can be attributed to Python's built-in high-level data types and its dynamic typing. For example, a Python programmer wastes no time declaring the types of arguments or variables, and Python's powerful polymorphic list and dictionary types, for which rich syntactic support is built straight into the language, find a use in almost every Python program. Because of the run-time typing, Python's run time must work harder than Java's. For example, when evaluating the expression a+b, it must first inspect the objects a and b to find out their type, which is not known at compile time. It then invokes the appropriate addition operation, which may be an overloaded user-defined method. Java, on the other hand, can perform an efficient integer or floating point addition, but requires variable declarations for a and b, and does not allow overloading of the + operator for instances of user-defined classes.
For these reasons, Python is much better suited as a "glue" language, while Java is better characterized as a low-level implementation language. In fact, the two together make an excellent combination. Components can be developed in Java and combined to form applications in Python; Python can also be used to prototype components until their design can be "hardened" in a Java implementation. To support this type of development, a Python implementation written in Java is under development, which allows calling Python code from Java and vice versa. In this implementation, Python source code is translated to Java bytecode (with help from a run-time library to support Python's dynamic semantics).
Javascript
Python's "object-based" subset is roughly equivalent to JavaScript. Like JavaScript (and unlike Java), Python supports a programming style that uses simple functions and variables without engaging in class definitions. However, for JavaScript, that's all there is. Python, on the other hand, supports writing much larger programs and better code reuse through a true object-oriented programming style, where classes and inheritance play an important role.
Perl
Python and Perl come from a similar background (Unix scripting, which both have long outgrown), and sport many similar features, but have a different philosophy. Perl emphasizes support for common application-oriented tasks, e.g. by having built-in regular expressions, file scanning and report generating features. Python emphasizes support for common programming methodologies such as data structure design and object-oriented programming, and encourages programmers to write readable (and thus maintainable) code by providing an elegant but not overly cryptic notation. As a consequence, Python comes close to Perl but rarely beats it in its original application domain; however Python has an applicability well beyond Perl's niche.
Tcl
Like Python, Tcl is usable as an application extension language, as well as a stand-alone programming language. However, Tcl, which traditionally stores all data as strings, is weak on data structures, and executes typical code much slower than Python. Tcl also lacks features needed for writing large programs, such as modular namespaces. Thus, while a "typical" large application using Tcl usually contains Tcl extensions written in C or C++ that are specific to that application, an equivalent Python application can often be written in "pure Python". Of course, pure Python development is much quicker than having to write and debug a C or C++ component. It has been said that Tcl's one redeeming quality is the Tk toolkit. Python has adopted an interface to Tk as its standard GUI component library.
Tcl 8.0 addresses the speed issuse by providing a bytecode compiler with limited data type support, and adds namespaces. However, it is still a much more cumbersome programming language.
Smalltalk
Perhaps the biggest difference between Python and Smalltalk is Python's more "mainstream" syntax, which gives it a leg up on programmer training. Like Smalltalk, Python has dynamic typing and binding, and everything in Python is an object. However, Python distinguishes built-in object types from user-defined classes, and currently doesn't allow inheritance from built-in types. Smalltalk's standard library of collection data types is more refined, while Python's library has more facilities for dealing with Internet and WWW realities such as email, HTML and FTP.
Python has a different philosophy regarding the development environment and distribution of code. Where Smalltalk traditionally has a monolithic "system image" which comprises both the environment and the user's program, Python stores both standard modules and user modules in individual files which can easily be rearranged or distributed outside the system. One consequence is that there is more than one option for attaching a Graphical User Interface (GUI) to a Python program, since the GUI is not built into the system.
C++
Almost everything said for Java also applies for C++, just more so: where Python code is typically 3-5 times shorter than equivalent Java code, it is often 5-10 times shorter than equivalent C++ code! Anecdotal evidence suggests that one Python programmer can finish in two months what two C++ programmers can't complete in a year. Python shines as a glue language, used to combine components written in C++.
Common Lisp and Scheme
These languages are close to Python in their dynamic semantics, but so different in their approach to syntax that a comparison becomes almost a religious argument: is Lisp's lack of syntax an advantage or a disadvantage? It should be noted that Python has introspective capabilities similar to those of Lisp, and Python programs can construct and execute program fragments on the fly. Usually, real-world properties are decisive: Common Lisp is big (in every sense), and the Scheme world is fragmented between many incompatible versions, where Python has a single, free, compact implementation
PYTHON FOUNDER:Guido van Rossum
  
(born 31 January1956) is a Dutch computer programmer who is best known as the author of the Python programming language. In the Python community, Van Rossum is known as a "Benevolent Dictator For Life" (BDFL), meaning that he continues to oversee the Python development process, making decisions where necessary. He was employed by Google from 2005 until 7 December 2012, where he spent half his time developing the Python language. In January 2013, Van Rossum
Van Rossum was born and grew up in the Netherlands, where he received a master's degree in mathematics and computer science from the University of Amsterdam in 1982. He later worked for various research institutes, including the Dutch Centrum Wiskunde & Informatica (CWI), Amsterdam, the United States National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, and the Corporation for National Research Initiatives (CNRI), Reston, Virginia.
About the origin of Python, Van Rossum wrote in 1996:
Over six years ago, in December 1989, I was looking for a "hobby" programming project that would keep me occupied during the week around Christmas. My office ... would be closed, but I had a home computer, and not much else on my hands. I decided to write an interpreter for the new scripting language I had been thinking about lately: a descendant of ABC that would appeal to Unix/C hackers. I chose Python as a working title for the project, being in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus).
In 2000 he further wrote:
Python's predecessor, ABC, was inspired by SETL – Lambert Meertens spent a year with the SETL group at NYU before coming up with the final ABC design!


In 1999, Van Rossum submitted a funding proposal to DARPA called Computer Programming for Everybody, in which he further defined his goals for Python:
  • an easy and intuitive language just as powerful as major competitors
  • open source, so anyone can contribute to its development
  • code that is as understandable as plain English
  • suitability for everyday tasks, allowing for short development times
Python has grown to become a popular programming language: For example, as of November 2011, it is the 3rd most popular language on the GitHub social coding website, and according to a programming language popularity survey it is consistently amongst the top 10 most mentioned languages in job postings. Additionally, it is consistently in the top 10 most popular languages according to the TIOBE Programming Community Index.

Comments

Popular posts from this blog

C Program to Display the ATM Transaction

Fortran

Java programming language